Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Одно из самых популярных направлений в IT - применение больших данных. Big Data - это масштабные, чаще всего неупорядоченные массивы информации, и технологии работы с ними. Такая информация может храниться в базах данных, в сетях социальных медиа, в системах GPS, датчиках и т.д.

В использовании Big Data есть преимущества для бизнеса, поскольку это открывает новые возможности и помогает компаниям развиваться. Онлайн-магазины, например, используют анализ больших данных для создания персонифицированных сервисов и продуктов, ориентированных на поведение клиентов.

Технологии анализа больших данных, такие как системы машинного обучения, помогают исследователям и аналитикам находить скрытые закономерности в массивах информации. К примеру, в области медицины это может привести к развитию новых лекарств и методов лечения.

Использование больших данных - это не просто модный тренд, это реальный инструмент, который помогает организациям и индивидуальным предпринимателям анализировать рынки, предлагать персонализированный контент и разрабатывать более эффективные продукты и сервисы для потенциальных клиентов.

Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.

Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.

Анализ методов хранения данных

Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.

При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.

Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.

Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.

Переработка информации перед анализом

Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.

Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.

Нейронные сети – это особый тип алгоритмов машинного обучения, который напоминает работу человеческого мозга. Они способны анализировать входные данные и выдавать требуемый результат. Применение умных нейросетей достаточно широко: они могут распознавать лица на фотографиях, а также определять недобросовестные транзакции на основе ряда признаков.

В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.

Статья о статистическом анализе

Современные технологии Big Data не только позволяют обрабатывать большие объемы данных, но и существенно улучшают точность статистических данных. Это объясняется тем, что более обширная выборка обеспечивает более точный и корректный анализ результатов.

Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.

Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.

Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.

Какими характеристиками обладает Big Data?

Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:

1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.

2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.

3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.

С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).

Каковы плюсы использования Big Data?

Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.

В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.

Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.

Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.

Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.

В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.

Маркетологи активно применяют большие данные в своей работе. Они анализируют информацию о покупках, поисковых запросах, посещениях и лайках в социальных сетях, чтобы определить предпочтения пользователей и предложить им наиболее интересные товары. С помощью Big Data реклама становится более целевой и эффективной.

Первопроходцем в области рекомендательных сервисов на основе анализа пользовательских данных является маркетплейс Amazon. В его системе используется не только информация об истории покупок и поведении клиентов, но и о внешних факторах, таких как время года или предстоящие праздники. Благодаря такому подходу система рекомендаций приносит более трети всех продаж.

Обеспечение безопасности транзакций - задача, которую банки решают с помощью больших данных. Они следят за мошенниками и предотвращают кражи персональных данных. Для этого используют анализ Big Data и машинное обучение, чтобы создавать модели поведения добросовестных пользователей.

Любое отклонение от этой нормы, сигнализирует о возможной опасности и вызывает немедленные меры безопасности.

Примером применения этой технологии может служить «Сбербанк», который еще в 2014 году внедрил систему сравнения фотографии клиента, полученной с помощью веб-камеры, с изображениями из базы. Этот метод идентификации оказался очень точным и помог сократить число случаев мошенничества в 10 раз.

Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.

Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.

Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.

Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.

Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.

Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.

Немного статистики

Исследование, проведенное консалтинговой компанией Accenture в 2014 году, включало опрос руководителей тысячи компаний из различных стран мира. По результатам исследования 60% опрошенных компаний успешно внедрили системы анализа больших данных и были довольны их результатами. Создание новых продуктов и услуг, увеличение количества способов получения дохода, улучшение клиентского опыта и повышение лояльности клиентов были названы участниками опроса основными преимуществами технологии Big Data.

Источник

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *